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Abstract 

A very simple relationship between momentum density 
and the Fourier transform of the population matrix is 
derived, valid for the representation of the electronic 
structure of a solid in a given atom-like basis set. This 
expression allows for the direct refinement of experi- 
mental anisotropic Compton profiles: the parameters are 
the coupling coefficients between various atomic func- 
tions and adjustable constants describing the radial part 
of atomic functions. In the case of unfilled bands, the 
shape of the Fermi surface can be refined as well. A 
simple ionocovalent model is proposed for LiH crystals, 
for which many anisotropic Compton profiles have been 
measured. The result of the refinement is very satisfac- 
tory, leading to a fair description of the anisotropies of 
the momentum density. The agreement between theory 
and experiment is as good for this simple model (with 
ony four parameters) as for a sophisticated band-structure 
calculation. Possible extensions are presented. 

Introduction 

Accurate X-ray diffraction experiments have been 
extensively analysed in terms of models for the electronic 
structure of solids (Becker, 1980; Coppens & Hall, 1982; 
Coppens & Becker, 1992). It turns out that these 
experiments are highly sensitive to the symmetry of the 
potential around each atomic site in the crystal. However, 
overlap densities, which are diffuse, are not interpretable 
from a diffraction experiment. As a consequence, it is 
impossible to develop a refinement procedure containing 
parameters that are directly involved in the expression for 
a wave function, and thus easily transferable to other 
predictions or comparisons with different experiments. 
The models that have been successfully used consist of a 
multipolar expansion of the density around each atomic 
centre. Such models lead to a fair representation of the 
density but may not be useful for an interpretation in 
'chemical terms': there is an exception in the case of the 
crystal-field approximation in transition-metal complexes 
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(Coppens, 1993). It may be useful to recall that if G is a 
reciprocal-lattice vector the structure factor, the modulus 
of which is measured in a diffraction experiment, is given 
by 

F(G) = f ( p ( r ) ) e x p ( i G ,  r)dr, (1) 
v 

where V is the volume of the unit cell and (p(r)) is the 
thermally averaged charge density. 

On the other hand, Compton scattering experiments 
(Williams, 1977; Cooper, 1985) have seldom (Schtilke & 
Kramer, 1979) been analysed in terms of a model from 
which one can extract parameters that are relevant to the 
electronic structure of solids, through a fit between 
experimental data and the theoretical model. 

Inelastic scattering experiments are performed at a 
synchrotron-radiation facility: one thus collects direc- 
tional Compton profiles. If n(p) is the electron 
momentum density, a directional Compton profile in 
the direction u is 

J(u, q) = f n ( p ) 8 ( q - p . u ) d p .  (2) 

The difference between prof'des in two crystallo- 
graphically distinct directions reveals the anisotropy of 
the electron distribution in momentum representation. 

Independently, advanced wave-function calculations 
can be performed for simple structures, which are then 
converted into momentum space. It is possible, using (2), 
to compute directional Compton profiles and to compare 
them (or their anisotropies) with experimental data. The 
origin of discrepancies may be difficult to judge, and it is 
generally difficult to understand the leading contributions 
to the peculiarites associated with a given compound. In 
addition, if Compton profiles exhaust the delocalized 
character of valence electrons, site differentiation (and its 
chemical consquences) is lost. For this reason, studies 
have often been restricted to solids with very simple 
composition. 

From this introduction, it is apparent that charge and 
momentum densities, two distinct observables involving 
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the one-particle reduced-density matrix, are sensitive to 
complementary aspects of interatomic forces, and one 
should gain significant understanding about cohesion by 
a combined analysis of both experimental densities. The 
relationship between p(r), n(p) and the one-particle 
density matrix has been extensively discussed (Smith, 
1980; Becker, 1988). The question whether the 
knowledge of p(r) and n(p) is sufficient to retrieve the 
one-particle density matrix is under discussion among the 
community of charge, spin and momentum density 
researchers (e.g. Proceedings of Sagamore X, 1992). 

It is the purpose of the present paper to show that one 
can directly refine directional Compton profiles in terms 
of parameters that naturally enter the wave function. A 
simple model is presented, which is tested on the 
experimental data for LiH, collected by Loupias & 
Mergy (1987) at LURE DCI. We then present some 
possible generalizations and extensions of the model, 
together with possible applications, some of which are in 
progress. 

Elec tron  m o m e n t u m  dens i ty  for  a f i l led band  

Crystal orbitals 

For a filled band, it is legitimate to use the equivalence 

. . . .  [NV/(2:r) 3] f . . . dk .  (3) 
occupied states BZ 

BZ stands for the Brillouin zone, N is the number of unit 
cells in the sample, V the volume of the unit cell. We 
shall make use of an atomic basis set. Let 4)u be an 
atomic basis function, centred at 

Rul = d u + !, (4) 

where ! is a direct-space lattice vector and d u the location 
of an atomic centre in the unit cell. Notice that there may 
be several 4)u centred at the same positions du. 

It is possible to construct a '/z-type' Bloch function: 

¢)u(k, r) = N-1/2nu(k) ~ exp(ik,  l)4)u(r - Ru0. (5) 
I 

Let S be the overlap matrix such that 

Suv(! ) = (4)u(r - du)14)~(r - R~I)). (6) 

We define 

Su~(k ) = ~ exp(ik,  l)Su~(! ) (7) 

as the Fourier transform of the overlap. It is then easily 
shown that 

nu(k ) = [Suu(k)] -1/2. (8) 

The momentum-space representation of the basis func- 
tions is 

Xu(P) = (270 -3/2 f exp(- i  p .  r)G(r)dr. (9) 

As a consequence, Bloch functions in momentum-space 
representation are given by 

seu(k, p) = [NSuu(k)] -'/2 ~ exp[i (k - p).l] 
I 

x e x p ( - i p ,  du)Xu(p). (10) 

It is easy to show that 

S,~(k) = [(2~r)3/Vl ~ ~u~(k - G), (11) 
G 

where G stands for reciprocal-lattice vector and the 
function o'u~(p ) is simply 

%~(p) = exp(- i  p .  du~)g~,(p)x~(p) 

with d u ~ = d  v - d  u. (12) 

These functions cru~ are known as soon as the basis 
functions have been chosen. 

By use of the well known formula 

exp(ik.  !) = [(27r)3/V] y] ~(k - G), 
! G 

it is possible to write another expression for seu(k, p): 

~u( k, P) -- [(27r)3/V][NSuu(k)] -'/2 Xu(P) 

× e x p ( i p . d u ) y ~ 6 ( k - p - G  ). (13) 
G 

Crystal orbitals are constructed as linear combinations of 
Bloch functions for each value of the wave vector k: 

• (k, r) = y~cu(k)~u(k,r). (14) 
# 

In momentum-space representation, the crystal orbitals 
take the form 

~'(k, 

For each value of 
simply the number 
content of the unit 

p) = ~ cu(k)~u(k, p). (15) 
u 

k, the dimension of the problem is 
of basis functions associated with the 
cell. 

Momentum density 

The normalized momentum density is defined as 

n(p) = N -1 ~ [~'(k, p)l 2 
k 

=[V/(2rr) 3] f I~(k, p)12dk. (16) 
Bz 

The well known population matrix, in reciprocal-space 
representation, has the following definition: 

"Pu~(k) = c*u(k)G(k)/[Suu(k)S~(k)] 1/2 (17) 

and has the periodicity of the reciprocal space: 

79u~(k + G) - -  79u~(k ). 
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Furthermore, one can write 

I¢(k, p)l 2 = [(27r)3/NV] ~ ~v,,~(k)~u~(p) 
/z ,v  

x )-] y~ exp[i (p - k) • !] 8 (k - p - G). 
I G 

The integration of this quantity over the Brillouin zone 
can be transformed into an integration over the entire 
reciprocal space and allows the momentum density to be 
expressed in the final form: 

n(p) = ~ 79~,v(P~u~(P)" (18) 

When several bands are needed, one just has to make a 
sum of expressions such as (1 8) for each band. 

This expression is very interesting because it shows a 
direct proportionality between the momentum density at 
a given momentum p and the population matrix 
coefficients. Any model of electronic structure involves 
the choice of a basis set and the construction of a 
population matrix. It is clear from (18) that the 
parameters involved at a given level of approximation 
for the wave function of a solid with filled bands can be 
adjusted from the comparison with observed momentum 
density when it is available. 

strongly overlapping atomic wave functions, which is the 
most common and interesting situation. It is not easy to 
model (21) with only a small set of parameters and the 
convergence of the lattice sum can be a problem in itself. 
The calculation of generalized form factorsf~,~j is known 
to be very time consuming. 

A second expression for the structure factor can be 
obtained. With the definition 

27u~(p, p') = X~,(p)xv(p')exp(-i p ' .  d~)exp( ip ,  du), 

(22) 

it is easily shown that 

F(H)  = y~ f 79u~(p)E~,~(p, p + H)dp .  (23) 
/~,,P OO 

This expression is simpler than (21), and can be more 
easily modelled according to a band-theory scheme. 

Comparison with (18), however, shows that the 
momentum density is more directly related to the 
population matix 79 than the charge density. The 
integration over reciprocal space that is involved in the 
definition of the structure factor is responsible for the 
difficulties encountered in interpreting Bragg diffraction 
data alone. 

Real-space charge density and the structure factor 

The expression for the normalized density matrix in 
the real-space representation is 

T( r ,  r ') = N -1 ~ ~ `4u~(m - !) 
U,v I , m  (19) 

x $~,(r' - d~, - l)4,~(r - dv - m). 

One immediately gets for the momentum density: 

n(p) = N -1 ~ ~ `4u~(l) e x p ( - i  p .  l)cru~(p ). 
tz ,v  I 

An identification with (18) leads to the following 
relationship between `4 and 79: 

79uv(p) = ~'~ ̀ 4u~(I) e x p ( - i  p .  l) 
I 

(20) 
`4u~(I) = [V/(2rr) 3] f 79u~(k)exp(ik. l)dk. 

az 

.4 and 79 are thus Fourier transforms of one another. 
The structure factor F(H)  can be given two different 

expressions. From (19), one obtains 

F(H) = ~ ~ .4u~(m)fu~,m(H) 
/,~,V m 

fur, re(H) = f $~(r - du)$v(r - d~ - m ) e x p ( i H ,  r)dr.  

(21) 

This is a very difficult expression to compute since it 
involves a sum over a large number of terms, at least for 

The influence of vibrations 

Vibrations are well known to have an effect on the 
structure factor, the most important part coming from the 
acoustic modes. If, as is usually done, one neglects the 
change of the population matrix 7 9 under vibrations, and 
if W u is the Debye-Waller factor for site/z, (23) becomes 
a more complex expression, which is reasonably 
approximated as 

F(H)  = ~ e x p [ -  l(Wu + W~)] 
$Z,V 

x f 79uv(p),Uuv(p, p + H)dp .  (24) 
oo 

Under similar assumptions, the only changing terms in 
the momentum density are the quantities truv, which 
explicitly involve the interatomic vector duv: this vector 
only varies through the optic modes of vibration, but 
remains practically unchanged under acoustic vibrations. 
Since the amplitude of optic modes is generally small, 
one may in a first approach neglect the effect of vibration 
on the momentum density. It would be possible, if 
necessary, to replace exp(i p .  du~ ) by its thermal average 
(exp( ip .  duv)). 

It should be pointed out that the assumption that 79 
does not vary with the atomic positions is rather poor. A 
more general treatment will appear to be necessary with 
increasing accuracy of experimental data, although it is a 
difficult problem: at present, no simple tractable model 
exists for the relaxation of the one-particle density with 
atomic motion. 
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Application to cubic lithium hydride 

Lithum hydride, which has a rock-salt structure (cell 
parameter a = 4.083 .~,) has been studied both by X-ray 
diffraction (Calder, Cochran, Griffiths & Lowde, 1962; 
Vidal & Vidal, 1992) and by Compton scattering 
experiments [Phillips & Weiss, 1969; Reed, 1978; 
Loupias & Mergy, 1987; see Pattison & Weyrich 
(1979) for a position-space analysis]. It can be 
considered as a prototype for an insulator and is 
generally assumed to be a highly ionic compound 
(Li+.H-). 

In parallel with these experimental investigations, 
several theoretical studies have been undertaken (Hurst, 
1959; Aikala, 1976; Grosso & Pastori Parravicini, 1978, 
1979; Dovesi, Ermondi, Ferrero, Pisani & Roetti, 1984; 
Ramirez, Mclntire & Matcha, 1976): some of these 
calculations assume a total ionicity, others are based on a 
LCAO SCF treatment with an extended basis set. 

Surprisingly, comparison between theory and experi- 
ment is controversial for this very simple compound, for 
which the precise balance between charge transfer and 
partial covalent character is still not well established. 
This fact and the simplicity of the electronic content of 
the unit cell are the major reasons why we chose this 
compound for a first refinement of the electronic 
structure from Compton profiles. 

Directional Compton profiles and the 3D momentum 
density 

The latest experiment has been performed by Loupias 
& Mergy (1980) at LURE DCI, using a 10 KeV radiation 
on D 15. The principle of the spectrometer was described 
by Loupias & Petiau (1980). It operates with a channel- 
cut germanium monochromator, with an energy resolu- 
tion of 11 eV. The signal is analysed through a bent 
silicon crystal (resolution 3 eV) and detected by a gas 
proportional-counter-based position-sensitive detector 
(energy resolution 21 eV). With such a device, the 
experimental resolution of Compton profiles is about 
0.16 a.u., which is a great improvement compared with 
older experiments using conventional sources [e.g. 
0.45 a.u. found by Reed (1978)]. The results from the 
measurements in different crystallographic directions are 
shown in Table 1. These profiles are normalized to four 
electrons and corrected for systematic experimental 
effects. 

From those profiles, it was possible to reconstruct the 
3D momentum density n(p) using the program 
RECONST written by Hansen (1986). In this method, 
the momentum density is expanded in cubic harmonics 
as 

n(p) = ~ ni(P)hi(p/p), (25) 
i 

where hi is the ith cubic harmonic. The success of this 
reconstruction is based on the fact that, if B(t) is the 

Fourier transform of n(p) (which is also the auto- 
correlation function of the one-particle density matrix), 
the Fourier transform of the directional Compton prof'de 
J(u,q) is equal to B(tu), the function B along the direction 
u. Furthermore, the cubic harmonic expansion is 
invariant by Fourier transformation. 

Let B(t, ui) be the observed values of the autocorrela- 
tion function at points t, in the direction ui: a total of 
NtNdi r observations, with N t values of t and Ndi r 
directions u. Let N c be the number of cubic harmonics 
in the expansion. Let B(t) be written as 

Nc 
B(t) = ~ bk(t)hk(t/t). (26) 

k=l 

The values of bk(t~) are determined by a least-squares fit 
where the quantity 

NtNdir } Nc ]2 
E B(tnui)- E bt(t~)ht(ui) 

n=l i=1 k 

is minimized, n(p) is finally obtained by a Fourier 
inversion of (26). 

At the present stage of the method, the various 
observations on the directional profiles are supposed to 
be uncorrelated, an approximation that will have to be 
improved in the future, since two points separated by Ap 
smaller than the resolution are evidently correlated. 
Besides this assumption, the error treatment in the 
reconstruction process is correct. 

In practice, if Ap is the separation of two points on a 
profile, and if N points are observed on each prof'de, then 

t~ = nAt with At = rr/NAp. 

Anisotropy of Compton profiles: comparison with theory 

The most relevant information comes from the 
difference between two directional Compton profiles. 
Such a difference reveals the anisotropic features of the 
momentum distribution and is related to the difference in 
atomic interaction along two crystallographically distinct 
directions. For example, in LiH, Jt0o corresponds to the 
direction of closest Li-H contacts, although J~0o is related 
to the closest H-H (or Li-Li) contacts. Jill corresponds 
to a longer Li-H distance. Obviously, (Ji00 -J110) is the 
most informative anisotropy and must be very sensitive 
to the nature of nearest-neighbour interactions and to the 
balance between charge transfer and covalency. We will 
also consider (Jl0o - J ~ l ) ,  which is sensitive to longer- 
range effects. 

Experimental anisotropies are drawn in Fig. 1, together 
with those resulting from two different calculations. 

The first calculation (Aikala, 1976) is based on a fully 
ionic model for the crystal, which is built from Li+(ls 2) 
and H-( l s  2) ions. If the lithium core orbitals are quite 
contracted, the hydrogen orbitals strongly overlap, 
resulting in a Pauli repulsion in the region between 



q J(l,O,O) J(l,l,O) J(l,l,l) 

0.0000 2.1049 2.0807 2.1755 

0 .10000 2.0739 2.0690 2.1463 

0.20000 1.9861 2.0215 2.0613 
0 .30000 1.8605 1.9211 1.9233 
0 .40000 1.7159 1.7691 1.7447 
0.50000 1.5577 1.5703 1.5472 
0.60000 1.3713 1.3309 1.3272 
0.70000 1.1459 1.0848 1.0832 

0 .80000 0 .93118 0 .88037 0.87015 
0 ,90000 0 .77066 0 .73269 0.73008 
1.0000 0 .64338 0.62761 0.62827 

1.1000 0.53831 0 .54727 0 .53589 
1.2000 0 .46177 0.47830 0.46677 
1.3000 0.40961 0 .42067 0 .41236 
1.4000 0 .36585 0 .37109 0.36122 

1.5000 0 .31892 0.32491 0.32058 

1.6000 0 .28317 0.28786 0.28506 
1.7000 0.25637 0.25850 0.25184 
1.8000 0 .22686 0.23253 0.22171 

1.9000 0.20307 0 .20772 0.19656 
2.0000 0.18372 0.18354 0.18124 

2.1000 0.16384 0.16415 0.16557 
2.2000 0.14614 0.14879 0.14365 
2.3000 0.13175 0.13291 0.12693 

2.4000 0 .11858 0 .11706 0.11823 

2.5000 0 .10487 0.10460 0.10576 

2.6000 0 .094870 0.094460 0.090460 

2.7000 0 .087990 0 .085020 0.082580 

2.8000 0 .079470 0.075760 0.076430 

2.9000 0 .070630 0 .067660 0.067070 

3.0000 0 .063660 0.062480 0.059620 
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Table 1. Compton profiles measured by Loupias & Mergy (1980) 
J(2,1,O) J(2,1,1) J(2,2,1) J(11,11,2) J(3,2,1) 

2.0951 2.1441 2.1515 2.0788 2 135~ 2.0626 2.0626 

2.0832 2.1116 2.1252 2.0734 2.1135 2.0525 2.0525 

2.0345 2.0234 2.0436 2.0282 2.0417 2.0043 2.0043 
1.9333 1.8985 1.9126 1.9279 1.9201 1.9023 t .9023  
1.7745 1.7389 1.7460 1.7797 1.7582 1.7525 1.7525 
1.5745 1.5400 1.5480 1.5741 1.5580 1.5649 1.5649 
1.3427 1.3148 1.3205 1.3331 1.3251 1.3543 1.3543 

1.0932 1.0864 1.0754 1.0913 1.0800 1.1235 1.1235 

0.88918 0.88861 0.86210 0.87929 0.86527 0.89786 0.89786 
0.74117 0.74057 0.72703 0.72430 0.72580 0.73010 0.73010 
0.61983 0.62892 0.63629 0.61899 0.63420 0.61769 0.61769 

0.53368 0.53862 0.54496 0.54407 0.54524 0.53225 0.53225 
0 .46782 0.46617 0.46705 0.48089 0.47245 0.46741 0.46741 
0.40691 0.41320 0.41311 0.41680 0.41847 0.41319 0.41319 
0 .36189 0.36956 0.36774 0.36454 0.36689 0.36844 0.36644 

0 .32232 0.32430 0.32732 0 .32549 0.32138 0.32722 0.32722 

0.28134 0.28787 0.29249 0.28801 0.28636 0.29281 0.29281 
0.25159 0.26085 0.25833 0.25670 0.25957 0.26302 0.26302 
0.22880 0.23109 0.22662 0.23121 0.23234 0.23373 0.23373 

0.20503 0.20265 0.19918 0.20660 0.20241 0.20622 0.20622 

0.18380 0.18154 0.17886 0.18524 018191  0 18462 0.18462 

0.16279 0.16668 0.16375 0.16517 0.16737 0.16738 0.16738 
0.14506 0.15325 0.14671 0.14561 0.14771 0.15057 0.15057 
0.13303 0.13522 0.13161 0.13028 0.13032 0.13317 0.13317 

0.11797 0.11859 0.11912 0.11810 0.11780 0.11861 0.11861 

0.10492 0.10677 0.10666 0.10665 0.10490 0.10729 0.10729 

0 .097880 0.095680 0.095680 0.096830 0.092880 0.097330 0.097330 

0.087380 0.088240 0.084540 0.086700 0.082710 0.088720 0.088720 

0 .078390 0.081570 0.075440 0.074890 0.076150 0.079080 0.079080 

0 .073340 0.072220 0.068620 0.066490 0 0 7 0 1 9 0  0.068740 0.068740 

0 .064600 0.064070 0.062490 0.061460 0.061800 0.062590 0.062590 
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J(7,5,0) J(4,1,0.5) J(7,3,2) J(4,1,1) 

2.0914 2.1230 

2.0736 2.0941 

2.0127 2.0185 
1.9008 1.9100 
1.7458 1.7522 
1.5610 1.5461 
1.3435 1.3263 

1.1053 1.0963 

0.90035 0.88264 
0.75190 0.73477 
0.63437 0.63228 

0.53773 0.54340 
0.46385 0.47071 
0.40679 0.41137 
0.36285 0.36251 

0.32513 0.32050 

0.29005 0.28406 
0.26114 0.25651 
0.23317 0.23059 

0.20679 0 20710 

0 18811 0.18752 

0 1 6 7 9 6  0 16463 
0 14631 014643  
0.13181 013754  

0.11967 012476  

0.10716 0 10649 

0.095330 0.093680 
0.085050 0 085330 

0.078270 0.076380 

0.070400 0 069700 
0.061620 0.064090 

hydrogen anions. Under such assumptions, the momen- 
tum density can be expressed as 

n(p) = no(p) + nv(p) 

n¢(p) = ]XLi(P)l 2, nv(p) : IXH(P)I2/SHH(P). (27) 

According to (7), SHu(P) is the Fourier transform (FF) of 
the overlap between anions and is the only contribution 
to anisotropy in this model. The convergence of series (7) 
is slow in this case and it is necessary to go at least to the 
12th shell of H-H neighbours. This model has been quite 
successful in interpreting the anisotropy of momentum 
density in ionic crystals (Kodama, Ishikawa & Misumo, 
1981; Pattison & Weyrich, 1979; Ameri, Grosso & 
Pastori Parravicini, 1981). The effective form of the 
anionic orbital is taken from a theoretical study by Hurst 
(1959). However, it is apparent in Fig. 1 that there 
remains a significant disagreement with experiment, in 
both magnitude and phase. 

The second calculation (Dovesi et al., 1984) is a self- 
consistent band-structure approach using a triple-( 
polarized basis set. The improvement is very significant, 
as seen in Fig. 1, for both the phase and amplitude of the 
oscillations of the anisotropies of Compton profiles. It 
may be concluded that LiH cannot be considered as a 
simple ionic compound and that its electronic structure 
can only be obtained through an extended computation. 
However, from such calculations it is not easy to answer 
the simple questions one has in mind when thinking 

about the electronic properties of a solid: what is the 
effective shape of ionic orbitals, what is the amount of 
covalency... ? Moreover, it should be noticed that, in the 
literature, the comparison between theoretical and 
experimental Compton profiles is only 'visual': either 
they agree or they do not. No adjustment is made by 
direct use of the experimental data that could help in 
understanding the reason for given behaviour of the 
momentum density. 

We pretend that this stage of comparison may be 
overcome and that the basic contributions to the 
electronic properties of a solid can be directly extracted 
from the experimental Compton effect. 

A simple locally covalent model for LiH 

It is clear from the previous discussion that the charge 
transfer from Li to H cannot be considered as total. The 
following qualitative argument can be invoked. If a fully 
ionic picture is assumed, the strong overlap between H- 
doubly occupied orbitals leads to an electronic repulsion 
from the middle of H-H contacts. Some electronic 
charge has to be redistributed in other regions of the cell, 
preferentially regions of low electron density. This may 
indirectly induce a coupling between Li and H, in the 
[ 100] direction, and therefore a partial covalent character 
may be expected. 

Keeping in mind the strong ionicity of the compound, 
we may start with the following simple model. We 
assume that the coupling between a given H- ion and the 
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cation lattice is limited to the first six neighbours, which 
define a regular octahedron, as depicted in Fig. 2. 
Considering the two valence electrons in a primitive unit 
cell, we consider they can be localized over this HLi 6 
structure. One can construct the crystal by reproducing 
this cluster through all the translations of  the H lattice 
and by taking full account of  the non-orthogonality of  the 
wave functions of  neighbouring clusters. 

Let us call $ ( r )  the wavefunction for the cluster. It can 
be written as 

~b(r) = (I + 2~.Z' + k2)-'/2[~o~(r) + k~o~iP(r)]. (28) 

2. is the covalent parameter, ¢pLi 2w a symmetry-adapted 
sum of ~r-type hybrids on the Li atoms, and 2? the overlap 
between H and Li. If  one neglects the overlap between 
different Li sites, 

6 

~0L2~ p = 6- ' /2  y~ ~o~sP 
i = 1  

~o 2"p = (1 +/2.2) -1/2" (29) 
i I,~Os, i -Jr ~Z (Pp,i) 
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Fig. 1. Compton anisotropies: (a) JJ0o - Jll0; (b) JI0o -- Jill- Solid line: 

data from Loupias & Mergy (1980); dotted line: Hartree-Fock 
calculation used by Dovesi et al. (1984); dashed line: LCAO used by 
Aikala (1976). 

/.t is the amount of  polarization at the lithium site. The 
atomic functions are chosen as Slater-type orbitals: 

¢pts _~ exp(_ZHr) ,  tp2 s ~ r exp(--ZLi r)  

tP2px "~" x exp(--ZLir ), 

where z n and ZLi are adjustable parameters. We then 
construct a Bloch function 

• (k, r)  = I N S ( k ) ]  -~/2 ~ ~ r  - L) e x p ( i k  • L). 
L 

If  X(P) is the FT of ~(r) ,  then we can write the 
momentum density as 

n(p) = nc(p )  + nv(p) 
(30) 

nv(P) = Ix(p)12/S(p). 
It is assumed that the overlap among core Li orbitals is 
negligible and that the valence wave functions are 
orthogonal to the core wave functions. This last 
assumption is not rigorous and, in a further study, core 
orthogonalization should be included. 

There are only four parameters in the model: 
k, # ,  z H, ZLi. It is also useful to include a scale factor 
Sc for the momentum density. Core orbitals are taken as 
Har t ree-Fock orbitals for the Li atom. The best values 
for the parameters are determined by a least-squares fit 
based on the reconstructed 3D density as an observable 
by minimizing the quantity 

M = ~ tr/-2lnobs(Pi) -- Sc[nc(Pi  ) -q- nv(Pi)]l 2. (31) 
P t  
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Fig. 2. The symmetry for the cluster made out of one H atom at the 
centre of the octahedron and Li atoms at the vertices. 
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Table 2. Values of the parameters obtained using the 
refinement technique 

# is the polarization parameter. The covalency parameter is ~.. The 
extensions of the orbital ls of H atoms and 2sp of Li atoms are 
respectively z H and ZLi. Sc is the scale factor. 

/,t ~. ZH ZLi SC R 
Value 0.009 -0.318 0.744 0.588 1.861 7% 
Standard deviation 3 x  l0 -3 4 x  l0 -3 4 x  10 -3 3 x l0 -3 3 x  10 -3 

tr i is the estimate error on the value of nob s at a point pi.* 
The refinement includes 4096 grid points in reciprocal 
space. The quality of the rermement is judged by the 
usual agreement factor: 

R = M / y~[nobs(Pi) 2/O'2]. (32) 
Pi 

The result from the refinement is given in Table 2. The 
overall R factor of 7% is quite satisfactory. In particular, 
we notice that, with the starting values corresponding to 
the fully ionic model from the literature, the value of R 
was 21%. For a perfect normalization of the experimental 
data, one should expect Sc = 2. The final value turns out 
to be different from that by 7%, namely 1.86. The 
amount o f p  character on the lithium is very small but we 
verified that refinement to be quite insensitive to the 
polarization parameter /z. (It can be guessed that this 
parameter should be revealed from a fit to Bragg 
structure factors, since it has a large influence on the 
symmetry of local charge distribution around Li.) The 
exponent z n is close to the value predicted by various 
theories on ionic crystals. However, ZLi turns Out tO be 
smaller than predicted by Slater rules, resulting in a 
diffuse valence orbital for Li. Finally, the value of the 
covalent parameter ~. is -0 .318 .  The covalent character 
of the crystal is generally defined as )2 and is thus equal 
to 10%. It corresponds to the amount of charge 
transferred from the anion to the cation. 

The ref'mement might have been done by a direct 
adjustment of the model to the observed directional 
Compton profiles. This would have been a more natural 
procedure, since the 3D n(p) is not a true observable. 
Such a refinement would have been based on the 
minimization of the quantity 

~_,rr -2 J(pk, ui) -- f n(q)&(P, -- q • ui)dr 2 J(p, ,ui) 
k,l 

This involves a double integration in reciprocal space at 
each point on each profile and would, therefore, lead to 
very long and cumbersome calculations for the mini- 
mization itself. This explains why we chose the first 
method. 

In Fig. 3, we present the anisotropies (J10o - J110) and 
(J10o - J111) for the experiment, the calculation of Dovesi 

* In this work, the core density has been calculated using well known 
functions for the ls orbitals centred on Li atoms. 

et al. (1984) and our refined model. It appears that our 
simple model agrees as well as Dovesi et al.'s (1984) 
calculation with the experiment. The inclusion of a 
coupling between Li and H appears to be essential for a 
fair representation of the oscillations of the anisotropies. 
As expected, the agreement is not as good for 
(J100- Ji l l) ,  where a good description of long-range 
behaviour of the wave function is required: however, we 
notice that the SCF calculation does not do better than 
our simple model. 

As a final test, we decided to try a rermement where 
i = 0. The resulting anisotropies are drawn in Fig. 4. We 
conclude that the damped oscillations in anisotropies are 
highly sensitive to the nature of interatomic coupling. 
Even a 10% covalency has a strong effect. 

The present model could be improved. Owing to the 
diffuseness of Li valence orbitals, this locally covalent 
model is not sufficient. A full LCAO model is needed. If 
one assumes that the resonance integrals between two 
orbitals are proportional to the mutual overlap of these 
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(b) 
Fig. 3. Compton anisotropies: (a) Jioo - Ji lo; (b) J1oo - J i l l .  Solid line: 

data from Loupias & Mergy (1980); dotted line: Hartree-Fock 
calculation used by Dovesi et al. (1984) convoluted by the 
experimental resolution; dashed line: this work. 
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orbitals, the problem can be written in terms of a few 
parameters (Gillet, 1992). Such a generalization is under 
progress. Besides this important point, orthogonalization 
between core and valence electrons should be included. 
One of the questionable results is the sign of ~., which 
would correspond to an antibonding band. This artefact 
may be related to core orthogonalization and the 
necessity for a non-local interaction scheme. Another 
possibility could be the existence of a strong correlation 
between paired electrons around H- sites. This can be 
handled by Hubbard approximation (Becker, unpub- 
lished) and the modelling is in progress. In any case, it is 
clear that the influence of such improvements is not 
going to be very significant on the anisotropies. Our 
simple model obviously contains the essential contribu- 
tions that can be revealed by a Compton experiment. 
Further developments may be crucial if it becomes 
possible to refine a given model on several independent 
experiments, such as the combination of Compton and 
Bragg scattering, or the combination of scattering and 
spectroscopic data. 

008! N~ 

\ 
00637! \ ~ . ~  

o.o,,2~ \\ 

-o.o,,25- '~ '~"  x. / /  

-0 06375- 

-0 085 , , , , , 

04 0.8 12 1.6 2 
q 

(a) 

Generalization to unfilled bands: possible 
applications 

The previous study has been limited to the case of filled 
bands. In the case of metallic systems, it is sometimes 
possible to describe the electronic properties in terms of a 
local atomic basis, for example in the case of transition 
metals. It can be shown that (18) for n(p) is generalized 
tO 

n(p) = ~ T~,,(p)r/(p)cr~,v(p), (33) 
/ , t , v  

where the function r/(p) is simply the shape function of 
the occupied part of reciprocal space, equal to 1 if p 
belongs to the interior of the Fermi surface, equal to 0 
otherwise. It is a periodic function in reciprocal space. As 
a result, parameters defining the shape of the Fermi 
surface enter the model. 

For complex systems, where the number of valence 
electrons is high, such subtleties may be impossible to 
detect. The use of the polarization of synchrotron 
radiation, however, has allowed for the measurement of 
magnetic Compton profiles (Sakai & Sekizawa, 1981; 
Cooper, 1985; Proceedings of Sagamore X, 1992), 
related to the spin momentum density: 

s(p) = n t ( P ) -  n ,1, (P), (34) 

which is the difference between the momentum density 
for electrons with a given spin. If one forgets about spin 
polarization effects, s(p) involves only the top orbitals or 
bands with unpaired electrons and the modelling may 
become very simple, with only a few parameters. It is 
typically a situation where quantum-mechanical calcula- 
tions are very difficult since they involve energy 
minimization for all electrons. Moreover, for such cases, 
one generally has access to magnetic neutron diffraction 
data, the Fourier series of which is the spin density in real 
space. We feel it is worthwhile to develop a refinement 
procedure for such cases. 
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Fig. 4. Compton anisotropies: (a) Ji0o - Ji 1o; (b) Jt0o - J i l l .  Solid line: 
data from Loupias & Mergy (1980); dotted line: this work with 
l = -0.3181; dashed line: this work using ~. = 0. 

Concluding remarks 

We have shown in this study that the momentum electron 
density in solids is simply related to the population 
matrix in momentum space, and that it is thus possible to 
refine directly the parameters of the wave function from 
measured Compton profiles. The application to cubic 
LiH was quite successful, since it led to very reasonable 
values for the shape of atomic orbitals and for the amount 
of covalent interaction. Such a simple scheme yields a 
very satisfactory anisotropy for the modelled momentum 
density. The anisotropies in the Compton prof'des are 
highly sensitive to these basic parameters, in particular to 
the covalent coupling between anions and cations. 

Although much too crude, this study opens new fields 
of application for Compton scattering experiments, in 
particular for magnetic systems. 
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Momentum density is quite insensitive to some 
features of the wave function, such as polarization and 
atomic differentiation, and it is proposed to generalize the 
method to a simultaneous refinement of the wave 
function based on several independent experiments 
(Compton, Bragg diffraction, spectroscopy, magnetic 
diffraction etc.). 
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Abstract 

Invariants are those properties by which objects (in 
chemistry, physics, mathematics etc.) are commonly 
identified. They remove sensitivity to presentation and 
allow the intrinsic properties of the object to be seen. 
Invariants used for unit-cell comparison and for Bravais- 
lattice identification are reviewed, and proposals are 
made for possible directions of future research. The 
results of an exhaustive search for polynomial invariants 
of the components of the metric tensor through degree 12 
are that polynomials in the volume squared are the only 
non-trivial such invariants. 

Introduction 

If some infinitesimal changes in an object cause 
discontinuous change in an invariant, then that invariant 
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Printed in Great Britain - all rights reserved 

may be useful for identifying a particular object, but it 
will be useless for examining a neighborhood of that 
object. We shall call such invariants (those that under 
some conditions have discontinuous change) unstable. 
For the identification of crystallographic lattices, stable 
invariants are needed (Andrews, Bemstein & Pelletier, 
1980; Andrews & Bernstein, 1988). In this paper, we 
review some stable invariants of Bravais lattices. The 
results of an exhaustive search for polynomial invariants 
of the components of the metric tensor through degree 12 
are that polynomials in the volume squared are the only 
non-trivial such invariants. 

It is important to realize that there is a difference 
between the symmetry of the lattice and the symmetry of 
the contents of the unit cell. In this paper (and in reduced- 
cell studies in general), one considers only the symmetry 
of the lattice (the so-called metric symmetry). Such a 
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